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ABSTRACT

Compressional and shear wave separation is an important step
in anisotropic elastic reverse time migration (ERTM). With sep-
arated wavefields, we can generate images between different
wave types and reveal more subsurface physical properties, as
well as remove unwanted crosstalk and improve image quality.
Traditional Helmholtz decomposition based on divergence and
curl operations for isotropic media cannot be directly extended
to vertically transversely isotropic (VTI) media. Wave-mode sep-
aration methods, similar to the nonstationary spatial filter and
Poynting vector, cannot preserve the phase and amplitude infor-
mation of the original coupled wavefield, thus limiting their
application in ERTM. Currently, the anisotropic wavefield de-
composition methods include the wavenumber-domain approach,
the low-rank approximation, and other separation approaches
based on different approximations, e.g., weak or elliptical
anisotropy. These methods are either computationally intensive

or involve large separation errors, especially in models with
strong heterogeneities and anisotropy. The VTI wavefield sepa-
ration operator is essentially defined in a mixed space-wavenum-
ber domain. We introduce scalar operators to transfer operations
from this mixed space-wavenumber domain to the space domain.
The local wave propagation direction in the scalar operators is
estimated using the Poynting vector, which is highly computa-
tionally efficient in the space domain. When we apply the wave
separation method to ERTM, we not only obtain the vectorized
qP and qSV waves but also retrieve the scalar qP wavefield. The
scalar and vector wavefields preserve the amplitude and phase
information in the original coupled wavefield. For anisotropic
ERTM, we suggest using the scalar imaging condition to generate
the PP image and the magnitude- and sign-based vector imaging
condition to produce the PS image, both having higher image
accuracy than the dot-product imaging condition. Numerical ex-
amples are used to validate our anisotropic wavefield separation
method and the related ERTM workflow.

INTRODUCTION

Prestack elastic wave reverse time migration (ERTM) is based on
the full elastic wave equation. Theoretically, it can accurately handle
various wave propagation phenomena, e.g., scattering, reflection, dif-
fraction, and focusing/defocusing in isotropic and anisotropic media
(e.g., Baysal et al., 1983; McMechan, 1983; Chang and McMechan,
1987; Xie and Wu, 2005; Sun et al., 2006; Xiao and Leaney, 2010;
Du et al., 2017; Zhang et al., 2023). Unlike the acoustic case, ERTM
can generate multimode images, such as the PP, PS, SP, and SS

composed of more information on the subsurface physical properties.
The converted-wave images usually have higher resolution than the
pure P-image because the S wave often involves shorter wavelengths
(e.g., Yan and Sava, 2008; Yan and Xie, 2012; Du et al., 2014;
Shabelansky et al., 2015, 2017).
Subsurface media are generally anisotropic, whereas wave veloc-

ities are dependent on the propagation direction (Tsvankin, 2012).
Applying isotropic imaging techniques to anisotropic media
can cause reduced resolution and inaccurate target positioning.
However, research on pure qP wave approximation methods is only
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applicable to traditional 1C imaging and cannot be used for
multicomponent imaging (Alkhalifah, 1998; Stovas et al., 2020;
Xu et al., 2020; Li and Stovas, 2021; Zhang et al., 2024). Therefore,
the development of anisotropic ERTM is important. Among differ-
ent types of anisotropic models, the vertically transversely isotropic
(VTI) model is a commonly used formation. Therefore, in this
study, we consider the wavefield separation and ERTM in a 2D
VTI medium.
The P- and S-wave separation is a key step in ERTM (e.g., Chang

and McMechan, 1987; Sun et al., 2006; Yan and Sava, 2008; Du
et al., 2014; Yang et al., 2019). There are two wavefield separation
schemes. One is based on the Helmholtz potential (e.g., Dellinger and
Etgen, 1990; Yan and Sava, 2009a, 2009b; Zhou andWang, 2017), in
which the phase and amplitude of the separated waves are inconsis-
tent with the original coupled wavefield and must be corrected before
applying ERTM (Sun et al., 2001; Sun et al., 2011). Furthermore, the
resulting PS image has a polarity reversal at normal incidence, and
polarity correction, a complicated and time-consuming process, is
required before producing the PS image (Sun and McMechan,
2001; Du et al., 2012; Duan and Sava, 2015). Another separation
scheme is based on the vector wavefield decomposition (e.g., Xiao
and Leaney, 2010; Zhang and McMechan, 2010; Cheng and Fomel,
2014; Fan et al., 2022). The separated vector P and S waves still pre-
serve the correct phase and amplitude as in the original coupled
wavefield. Therefore, this separation scheme is better for ERTM
(Du et al., 2014; Zhang and Shi, 2019; Zhou et al., 2019).
In isotropic media, the wavefields are separated by the divergence

and curl operators based on Helmholtz’s decomposition theorem
or by solving the P- and S-wave decoupled elastic wave equa-
tions (Xiao and Leaney, 2010; Zhang and McMechan, 2010; Fan
et al., 2022). In contrast, the polarizations of P and S waves in aniso-
tropic media are neither parallel nor perpendicular to the wave
propagation direction (Tsvankin, 2012). Therefore, the classical
Helmholtz theory is invalid. However, the idea of projecting the
coupled P and S wavefields onto their polarization directions

can be extended to anisotropic media for wave separation. There-
fore, the wavefield separation operator for anisotropic media can be
constructed from the polarization of qP or qSV waves, and the
polarization vectors can be obtained by solving the Christoffel equa-
tion (Zhang and McMechan, 2010).
Because the wavefield separation operator for VTI media is de-

fined in the mixed space-wavenumber domain, the easier and more
straightforward way is to perform the separation in the wavenumber
domain (Zhang and McMechan, 2010). However, although such a
scheme works well in a homogeneous medium, it encounters diffi-
culty when we extend it to a heterogeneous medium. If the sepa-
ration operator is transformed from the wavenumber domain to the
space domain with the inverse fast Fourier transform (FFT), similar
to the nonstationary spatial filter method (Dellinger and Etgen,
1990; Yan and Sava, 2009a, 2009b), it still faces the problem that
it cannot be effectively applied to an inhomogeneous medium.
The computational cost will be extremely high, particularly in a
3D heterogeneous medium. A low-rank approximation is another
solution to decompose anisotropic wavefields (Cheng and Fomel,
2014; Cheng et al., 2016). It requires multidimensional FFTs that
make parallelization inefficient. Subsequently, Wang et al. (2018)
propose a localized low-rank approximation, which is performed
separately in each divided small block, but intensive FFTs are still
required within each small region, and the computational cost is still
rather high. There are other separation methods based on different
approximations (Yang et al., 2019; Zuo et al., 2022, 2023), but they
are often not accurate and only applicable to weak anisotropy. Re-
cently, Zhang et al. (2022) propose an anisotropic Helmholtz wave-
field decomposition method in the space-wavenumber domain, but
it still requires three FFTs within each time step. To further improve
the efficiency, Zhang et al. (2023) develop a fast space-domain
anisotropic Helmholtz decomposition method that avoids using
multiple FFTs and complex matrix calculations. However, their
wavefield separation operators are built based on the approximation
around elliptical anisotropy or ε ¼ δ ≈ 0, where ε and δ are the

Thomsen anisotropic parameters and have
poor performance for models strongly biased
from the elliptical anisotropy.
Space-domain separation is usually the most

economical algorithm. Zhou and Wang (2017)
propose a space-domain method in which the
wave propagation direction and polarization di-
rection are calculated using the Poynting vector.
Liu et al. (2019) also develop a wave-mode sep-
aration method for TI media based on the fast
Poynting vector approach. Their methods can
separate the qP and qSV wave modes with high
precision in the space domain but cannot pro-
vide decomposed vectorized wave components.
To date, all of the aforementioned vector wave-
decomposition methods for anisotropic media,
such as the wavenumber-domain approach
(Zhang and McMechan, 2010), low-rank ap-
proximations (Cheng and Fomel, 2014; Cheng
et al., 2016; Wang et al., 2018), and other ap-
proaches based on weak or elliptical anisotropy
assumptions (Yang et al., 2018; Zuo et al.,
2022; 2023; Zhang et al., 2022; 2023), have
their advantages and disadvantages. In this

Figure 1. Snapshots for the coupled and separated wavefields calculated using equations 9
and 11 in a homogeneous VTI model. The model parameters are vP0 ¼ 3000 m=s,
vS0 ¼ 1500 m=s, ε ¼ 0.2, and δ ¼ 0.1. The snapshots are (a) the coupled particle-veloc-
ity wavefield in the x-direction Vx; (b) the Helmholtz potential of the qP wave P; (c) the
amplitude- and phase-corrected Helmholtz potential of the qP wave or the scalar qP wave
Pcor; (d and e) the x- and z-components of the separated vector qP wave VP

x and VP
z , (f) the

coupled particle-velocity wavefield in the z direction Vz; (g) the Helmholtz potential of the
qSV wave S; (h) the amplitude- and phase-corrected Helmholtz potential of the qSV wave
Scor; and (i and j) the x- and z-components of the separated vector qSV wave VS

x and VS
z .
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study, we introduce a novel anisotropic wavefield decomposition and
ERTM method featuring the following innovations:

1) Unlike traditional wave-mode separation methods such as
those by Yan and Sava (2009a), Zhou and Wang (2017), and
Liu et al. (2019), the proposed vectorized decomposition can
preserve the phase and amplitude of the original coupled
wavefield.

2) For currently existing vector decomposition methods, those
based on a low-rank approximation (Cheng and Fomel, 2014;
Cheng et al., 2016) may yield high accuracy but require sig-
nificant computational resources due to intensive FFTs dur-
ing each time iteration; others (e.g., Yang et al., 2019; Zuo
et al., 2022; 2023; Zhang et al., 2022; 2023) can retain rea-
sonable accuracy only for weak or near-elliptical anisotropic
media. Some of these methods (Yang et al., 2019; Zhang
et al., 2022; Zuo et al., 2022; 2023) still require intensive
FFTs or require solving Poisson’s equation. The method
by Zhang et al. (2023) stands out for its efficiency but
has low accuracy. In this study, we propose a space-domain
wavefield decomposition method that has high accuracy, low
computational cost, and is suitable for a wide range of aniso-
tropic media.

3) In addition to the commonly generated vectorized qP and
qSV waves, the proposed decomposition approach provides
a scalar qP wavefield. They all have correct amplitude and
phase information. This allows for the possibility of using
the scalar imaging condition in anisotropic ERTM.

THEORY

Wavefield separation operator

The qP- and qSV-wave polarization directions can be obtained by
solving the Christoffel equation (Tsvankin, 2012). In a 2D VTI
medium,

â1 ¼
�

kx
−ðc11−c44Þk2xþðc33−c44Þk2zþDk

2ðc13þc44Þk2z kz

�
; (1a)

â2 ¼
�

kx
−ðc11−c44Þk2xþðc33−c44Þk2z−Dk

2ðc13þc44Þk2z kz

�
; (1b)

where â1 and â2 are wavenumber-domain polarization vectors
of the qP- and qSV-waves, respectively, and Dk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðc11 − c44Þk2x − ðc33 − c44Þk2z �2 þ 4ðc13 þ c44Þ2k2xk2z

p
. Here, kx

and kz are wavenumbers in the x- and z-directions, respectively.
The term cij are elements of the VTI stiffness matrix and can be
expressed as c11 ¼ ð1þ 2εÞρV2

P0, c33 ¼ ρV2
P0, c44 ¼ ρV2

S0, and

c13 ¼ ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ 2δÞV2

P0 − V2
S0�ðV2

P0 − V2
S0Þ

p
− ρV2

S0, where VP0

and VS0 represent vertical velocities of the qP and qS waves, respec-
tively; ρ is the density; and ε and δ represent the anisotropic parameters
(Thomsen, 1986). The detailed derivation of equations 1a and 1b are
shown in Appendix A.
Because â1 is perpendicular to â2, we use the qP-wave polariza-

tion vector â1 to construct the wavefield separation operator iâ1.
Because this operator is defined in a mixed space-wavenumber

domain and cannot be transformed to the space domain directly, we
follow the idea of the scalar operator by Xu and Zhou (2014a,
2014b) and Liang et al. (2023) and let

â1 ¼
�

kx
Skkz

�
; (2)

Figure 2. Snapshots of the separated wavefields calculated using
equations 12 and 13 in the model used in Figure 1, with (a) scalar
qP wave Pcor; (b and c) x- and z-components of the separated vector
qP wave VP

x and VP
z , and (d and e) x- and z-components of the sep-

arated vector qSV wave VS
x and VS

z .

Table 1. The Thomsen anisotropic parameters for 2D
homogeneous VTI models.

Model no. VP0 (m/s) VS0 (m/s) ρ (kg/m3) ε δ

1 3000 1500 1.8 0.25 –0.29
2 3000 1500 1.8 0.29 0.25

3 3000 1500 1.8 0.1 –0.1
4 3000 1500 1.8 0.1 0.1

Wave separation and ERTM in VTI media C213
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where Sk is a wavenumber-domain scalar operator and can be
expressed as

Sk ¼
−ðc11 − c44Þk2x þ ðc33 − c44Þk2z þDk

2ðc13 þ c44Þk2z
: (3)

By defining a local qP-wave unit propagation direction vector
n ¼ ðnx; nzÞ ¼ k=jkj, Sk can be transformed to a space-domain
scalar operator:

Sn ¼
−ðc11 − c44Þn2x þ ðc33 − c44Þn2z þDn

2ðc13 þ c44Þn2z
; (4)

where Dn¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðc11−c44Þn2x−ðc33−c44Þn2z �2þ4ðc13þc44Þ2n2xn2z

p
.

Therefore, Sn can be calculated through vector n.
Following Zhou and Wang (2017), n can be obtained by calcu-

lating the wave propagation direction using the Poynting vector,
which is a fast and low-cost way to estimate the local propagation
direction (Yoon and Marfurt, 2006). Theoretically, the qP wave
propagation direction can only be accurately determined after the
wavefield separation. Here, we first generate an initial qP wavefield

and roughly estimate the propagation direction. This initial qP
wavefield does not have to be very accurate. Thus, we apply a di-
vergence calculation to the coupled elastic wavefield to obtain an
initial qP wavefield, followed by calculating its Poynting vector and
using this as an estimate for the local propagation direction. Be-
cause only a normalized propagation direction is required, the time
derivative in the Poynting vector can be ignored. This yields an es-
timation of the unit qP wave propagation vector:�

nx ¼ sx=jsj
nz ¼ sz=jsj ; (5)

where s ¼ ∇ðσxx þ σzzÞ, and σxx and σzz are normal stress wave-
fields. Therefore, the scalar operator Sn can be obtained fully in
the space domain.
Next, we transform the wavenumber-domain separation operator

iâ1 into the space domain and obtain the separation operator∇VTI in
2D VTI media:

∇VTI ¼
� ∂

∂x
Sn

∂
∂z

�
: (6)

In an isotropic media, i.e., ε ¼ δ ¼ 0,
Sn ¼ Sk ¼ 1, equation 6 degenerates to the
conventional isotropic separation operator:

∇ ¼
� ∂
∂x
∂
∂z

�
: (7)

We extend the wavefield separation theory
in Fan et al. (2022) for isotropic media to
the anisotropic case. For detailed derivation,
please refer to Appendix B. Assuming the
original coupled velocity wavefield is
V ¼ ðVx; VzÞ, the Helmholtz potentials of the
qP and qSV waves, denoted by P and S, are�

P ¼ ∇VTI · V
S ¼ ∇VTI × V

; (8)

and the amplitude- and phase-corrected Helm-
holtz potentials of the qP and qSV waves,
denoted by Pcor and Scor, are (Zhang and
McMechan, 2010; Fan et al., 2022)� ∂Pcor

∂t ¼ αVTIn P ¼ αVTIn ∇VTI · V
∂Scor
∂t ¼ βVTIn S ¼ βVTIn ∇VTI × V

; (9)

where αVTIn and βVTIn are the space-domain
scalar operators and can be expressed as8<
:

αVTIn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ρ

½ðc11þc44Þn2xþðc33þc44Þn2zþDn�
n2xþS2nn2z

q
βVTIn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ρ

½ðc11þc44Þn2xþðc33þc44Þn2z−Dn�
n2xþS2nn2z

q ;

(10)

where Pcor is also regarded as the scalar qP
wave and can be directly used in the following
PP image during ERTM. The vector qP and

Figure 3. The wavefield separation of model 1 in Table 1. The snapshots are (a) the
original coupled wavefield, (b) the separated wavefield using our method, (c) using
the method by Zhang et al. (2022), and (d) using the method by Zhang et al. (2023).
The names of the methods are indicated on the top of each panel; Vx and Vz are the x-
and z-components of the coupled wavefield; Pcor is the scalar qP wavefield; VP

x and VP
z

are the x- and z-components of the separated vector qP wavefield; and VS
x and VS

z are the
x- and z-components of the separated qSV wave components.
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qSV waves, denoted by VP and VS, can be calculated by solving
(Zhang and McMechan, 2010; Fan et al., 2022)

(
∂2VP

∂t2 ¼ αVTIn ∇VTIPcor ¼ðαVTIn Þ2∇VTI · ð∇VTI ·VÞ
∂2VS

∂t2 ¼−βVTIn ∇VTI×Scor ¼−ðβVTIn Þ2∇VTI× ð∇VTI×VÞ :

(11)

Finite-difference schemes are used to solve equations 8, 9,
and 11. However, we find that the wavefields separated using
equations 9 and 11 often show some errors, which we demonstrate
using numerical examples. A homogeneous VTI model is used
for this purpose. The model parameters are vP0 ¼ 3000 m=s,
vS0 ¼ 1500 m=s, ε ¼ 0.2, and δ ¼ 0.1, and an explosive source
is located at the center of the model. Figure 1 gives snapshots
of the coupled and separated wavefields, i.e., Pcor (Figure 1c),
Scor (Figure 1h), VP

x (Figure 1d), VP
z (Figure 1e), VS

x (Figure 1i),
and VS

z (Figure 1j). By checking these separated wavefields, we
see certain near-field noise around the source. Similar tests are
conducted for different anisotropic parameters, and the results
show that the noise is larger for models with stronger anisotropy.
This phenomenon occurs because all scalar operators, Sn, αVTIn ,
and βVTIn , are calculated based on the estimations of the propaga-
tion directions of the initial qP wavefield, and the embedded errors
lead to accumulated errors during the time iterations in equations 9
and 11. Using the Poynting vector to estimate the propagation
direction is not highly accurate, especially for
complicated wavefields, because it only repre-
sents the sum direction of different waves. In an
isotropic medium, equations 9 and 11 degener-
ate to the isotropic case in Fan et al. (2022),
wherein no errors are generated. Therefore, di-
rectly solving equations 9 and 11 is not an ideal
method of separation. An alternative method is
used to alleviate this difficulty.

Scalar qP wave

In the subsequent ERTM, we only need the
scalar qP wave Pcor for the PP image and the vec-
tor qP and qSV waves for the PS image. We first
calculate the Pcor. Because Pcor is directly related
to the stress, we can take a shortcut to retrieve it.
The detailed derivation is given in Appendix B,
and the final result is

Pcor

¼αVTIn
½ðc33−c13SnÞσxxþðSnc11−c13Þσzz�

c11c33−c213
:

(12)

For an isotropic medium, i.e., ε ¼ δ ¼ 0,
it directly degenerates to Pcor ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλþ 2μÞ=ð2ρðλþ μÞÞp ðσxx þ σzzÞ, where λ
and μ are Lamé coefficients in an isotropic
medium. This is exactly the 2D isotropic result
given by Zhou et al. (2019).

Vector wavefield decomposition

To decompose the coupled waves into vector qP and qSV waves,
the key issue is dealing with the second-order time derivatives in
equation 11. Naturally, it can be transformed into the quadratic in-
tegration of the coupled wavefield, which can be denoted by V 0 0

and satisfies ∂2V 0 0=∂t2 ¼ V. This equation can be solved during
the time iteration but after several numerical tests, we find it has poor
stability. Alternatively, following Yang et al. (2018), we first apply
the filter −1=ω2 to the source wavelet as well as multicomponent
seismic records and then complete the finite-difference forward mod-
eling to obtain the V 0 0. Finally, the following equations are used to
obtain the decomposed vector qP and qSV wavefields:�

VP ¼ ðαVTIn Þ2∇VTI · ð∇VTI · V 0 0Þ
VS ¼ −ðβVTIn Þ2∇VTI × ð∇VTI × V 0 0Þ : (13)

Figure 2 shows the separated wavefield snapshots calculated us-
ing equations 12 and 13 in the same VTI model as used in Figure 1.
By comparing Figures 1 and 2, we see that all snapshots Pcor (Fig-
ure 2a), VP

x and VP
z (Figure 2b and 2c), and VS

x and VS
z (Figure 2d

and 2e) show much higher accuracy compared with those obtained
by directly solving equations 9 and 11.

Anisotropic ERTM

For anisotropic ERTM, a dot-product imaging condition based on
the decomposed vector wavefield is often used (e.g., Yang et al.,

Figure 4. (a–d) Similar to Figure 3a–3d, except it is for model 2 in Table 1.

Wave separation and ERTM in VTI media C215
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2019; Zhang et al., 2022, 2023; Zuo et al., 2022). However, this
form of imaging condition, even for isotropic media, involves an
additional factor, which is the cosine or sine function of the angle
between the incident and reflection directions, leading to errors in
estimating the reflection coefficients (Zhang and Shi, 2019; Zhou
et al., 2019). Alternatively, for anisotropic media, we use a scalar
imaging condition for the PP image and a magnitude- and sign-
based vector imaging condition for the PS image (Fan et al., 2022):

IPPðxÞ ¼
R Tmax

0 Pcor
src ðx; tÞPcor

recðx; tÞdtR Tmax

0 Pcor
src ðx; tÞ2dt

; (14a)

IPSðxÞ ¼
R Tmax

0 sgnPSðx; tÞjVP
srcðx; tÞjjVS

recðx; tÞjdtR Tmax

0 jVP
srcðx; tÞj2dt

; (14b)

where IPP and IPS are the PP and PS images, the subscripts src and
rec denote the source- and receiver-side wavefields, and the operator
j · j denotes taking the amplitude of a vector. The sgnPP and sgnPS

are

sgnPPðx; tÞ ¼
�þ1;VP

srcðx; tÞ · VP
recðx; tÞ > 0

−1;VP
srcðx; tÞ · VP

recðx; tÞ < 0
; (15a)

sgnPSðx; tÞ ¼
�þ1;VP

srcðx; tÞ · VS
recðx; tÞ > 0

−1;VP
srcðx; tÞ · VS

recðx; tÞ < 0
; (15b)

where the operator “·” denotes the dot product between two vectors.
Following the preceding discussion for anisotropic ERTM, the

procedures to generate the PP and PS images are slightly different
and summarized next. The workflow for the PP image is as follows:

1) Extrapolate the source wavefield using the elastic VTI
finite-difference propagator. Use equation 12 to obtain the
source-side scalar qP wavefield Pcor

src .
2) Extrapolate the receiver-side adjoint wavefield using the elas-

tic VTI finite-difference propagator. Similarly, use equa-
tion 12 to obtain the receiver-side scalar qP wavefields Pcor

rec .
3) Apply the scalar imaging condition, equation 14a, to generate

PP-reflectivity images.

The workflow for the PS image is as follows.

1) Integrate the source wavelet and multicomponent seismic
records twice over time or, equivalently, filter them with
−1=ω2.

2) Calculate the source wavefield using the integrated source
time function and the elastic VTI propagator. Use equation 13
to obtain the source-side vector qP wavefield VP

src.
3) Use the elastic VTI propagator to extrapolate the integrated

multicomponent records to obtain the adjoint wavefield. Use
equation 13 to obtain the receiver-side
vector qSV wavefield VS

rec.
4) Apply the magnitude- and sign-based

vector imaging condition, equation 14b,
to generate the PS-reflectivity image.

NUMERICAL EXAMPLES

In this section, we validate the proposed
wavefield decomposition scheme and ERTM
workflow using the numerical examples in
2D elastic VTI models.

2D homogeneous models

First, we use a group of homogeneous VTI
models with different anisotropic parameters
to examine the proposed separation method.
The results are also compared with those of
Zhang et al. (2022, 2023). The four VTI mod-
els shown in Table 1 have different ε and δ.
Model 4 has elliptical anisotropy, model 2 is
close to elliptical anisotropy, and models 1
and 3 have strong anisotropy. Shown in Fig-
ures 3–6 are wavefields in these four models.
Figures 3a, 4a, 5a, and 6a show the coupled
wavefield; Figures 3b, 4b, 5b, and 6b show
the wavefields separated using our method;
and Figures 3c, 4c, 5c, and 6c and Figures 3d,
4d, 5d, and 6d are wavefields separated using
methods proposed by Zhang et al. (2022) and
Zhang et al. (2023), respectively.Figure 5. (a–d) Similar to Figure 3a–3d, except it is for model 3 in Table 1.
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In Figures 3–6, we see that the methods by Zhang et al. (2022)
and Zhang et al. (2023) only achieved high separation accuracy in
models 2 and 4 but not in models 1 and 3, wherein their results show
severe residual waves. The results demonstrate that the methods by
Zhang et al. (2022) and Zhang et al. (2023) only work well in el-
liptical or near-elliptical anisotropy. However, the proposed method
can obtain reasonably accurate results in all four models. By care-
fully investigating Figures 3–6, the results show that stronger
anisotropy tends to reduce the separation accuracy. As can be seen
in Figure 3b for model 1, the snapshot of VP

x is still slightly con-
taminated by residual qSV waves but nevertheless remains much
better than the other methods. During the calculation of scalar op-
erators, the local qP-wave unit propagation direction is computed
using the Poynting vector of the initial qP wavefield. As discussed
previously, the Poynting vector method can sometimes produce
poor estimates of the propagation directions. In addition, the initial
qP wavefield, obtained by applying a divergence operator to the
coupled elastic wavefield, is not a pure qP wavefield. Therefore,
minor errors may be introduced during the calculation.
The reason why methods by Zhang et al. (2022) and Zhang et al.

(2023) achieve better results for elliptical or near-elliptical models is
a result of the fact that they used the operator

∇VTI ¼
" ∂

∂xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ2δÞV2

P0−V
2
S0�ðV2

P0−V
2
S0Þ

p
½ð1þ2εÞV2

P0−V
2
S0�

∂
∂z

#
: (16)

This separation operator is based on the eigen-
vectors for the Christoffel equation under the
assumption of elliptical anisotropy (Yang
et al., 2019), which has larger errors when the
model is biased from the elliptical anisotropy.
In contrast, our separation is based on the exact
eigenvectors but calculated according to the
roughly estimated propagation vector, which
slightly affects the decomposition accuracy.
Numerical tests validate this.

2D layered model

In the second example, we verify the wavefield
separation method and ERTM using a three-layer
VTI model. The model size is 3200 m × 1200 m,
and the anisotropic parameters are given in Fig-
ure 7a. An explosive source with a 25 Hz Ricker
wavelet is injected at (1600 m and 40 m). The
model is gridded with a spacing interval of
4 m, and the time interval is 0.4 ms. The sepa-
rated wavefields using the proposed method
are shown in Figure 7b–7h, in which Figure 7b
and 7c shows the original coupled wavefields.
Figure 7d is the scalar qP wavefield. Figure 7e
and 7f are the decomposed vector qP wavefields.
Figure 7g and 7h are the decomposed vector qSV
wavefields. All separated wavefields show good
accuracy and can be used in the following
ERTM. Figure 8 shows the ERTM results from
a one-shot acquisition system, wherein Figure 8a
is the PP image from the scalar imaging condi-
tion (equation 14a), and Figure 8b is the PS im-

age from the amplitude- and sign-based imaging condition
(equation 14b). Figure 8c and 8d are PP and PS images using
the dot-product imaging condition. We see in Figure 8c that the po-
larity of PP reflectivity is reversed (indicated by the black arrows) at
very wide incident angles. In Figure 8d, the PS reflectivity is weak-
ened near the normal incidence (indicated by the black arrows)
compared with Figure 8b. Therefore, the PP image using the scalar
imaging condition and the PS image using the amplitude- and sign-
based imaging conditions can better preserve real reflectivities.

A more realistic 2D VTI model

As the last example, we investigate the capability of our wave-
field separation method and its applications in ERTM in the modi-
fied Marmousi2 velocity model (Martin et al., 2002). Anisotropic
parameters VP0, ρ, ε, and δ are given in Figure 9, and the VS0 is
derived from VP0 according to VS0 ¼ VP0=

ffiffiffi
3

p
. The migration

velocity model is obtained by smoothing the original model using
a 40 m × 40 m Gaussian box filter. The model grid size is
561 × 1001 with a spacing interval of 4 m. The time interval is
0.4 ms. In total, 99 explosive sources with a 25 Hz Ricker wavelet
are evenly located on the surface with a shot spacing of 40 m.
We first use a source at a distance x = 2 km to examine the per-

formance of our wavefield separation method. Figure 10b and 10c
shows the x- and z-components of the coupled elastic wavefield
in the migration model. Figure 10d shows the scalar qP wavefield.
Figure 10e and 10f shows the x- and z-components of the qP-wave,

Figure 6. (a–d) Similar to Figure 3a–3d, except it is for model 4 in Table 1.
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Figure 7. The three-layer VTI model and related
wavefield separations. (a) Model geometry, layer
parameters, and distributions of the source (star)
and receivers (inverse triangles). The snapshots are
(b) the x-component Vx and (c) the z-component
Vz of the original coupled wavefield, (d) the scalar
qP wavefield (Pcor), (e) the x-component VP

x and
(f) the z-component VP

z of the decomposed vector
qP wavefield, (g) the x-component VS

x and (h) the
z-component VS

z of the decomposed vector qSV
wavefield. The wave types and components are
labeled in individual panels.

Figure 8. The ERTM image results for a one-shot
acquisition system in the three-layer VTI model.
(a) PP image using the scalar imaging condition
(equation 14a), (b) PS image using the amplitude-
and sign-based imaging condition (equation 14b),
(c) PP image using the dot-product imaging con-
dition, and (d) PS image using the dot-product
imaging condition.

Figure 9. The VTI model modified from the
Marmousi2 velocity model. (a–d) The distribution
of VP0, ρ, ε, and δ.
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Figure 10. Wavefield separation results using our
method. (a) The migration velocity model VP0;
(b and c) the x- and z-components of the coupled
elastic wavefield, (d) the scalar qP wavefield;
(e and f) the x- and z-components of the qP wave,
and (g and h) the x- and z-components of the qSV
wave. The wave types and components are indi-
cated in the figure.

Figure 11. Wavefield separation results using
Zhang et al. (2023)’s method. (a and b) The x-
and z-components of the qP wave, and (c and d)
the x- and z-components of the qSV wave. The
wave types and components are indicated in the
figure.
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respectively. Figure 10g and 10h shows the x- and z-components of
the qSV wave. As expected, these results again present a satisfac-
tory separation accuracy. Figure 11 shows the wavefield separation
results using Zhang et al.’s (2023) method. For this model, δ is
slightly smaller than ε almost everywhere, which can be regarded
as a near-elliptical VTI medium. Therefore, the separation results of

both show good accuracy. Figure 12 shows the PP and PS images
using the aforementioned ERTM method and Zhang et al.’s (2023)
ERTM method. Zhang et al. (2023) obtain the decomposed vector
qP and qS wavefields and use the dot-product vector imaging con-
dition to produce the PP and PS images. We extract two traces at
distances of 1.84 and 2.8 km in PP and PS images and compare

them in Figure 13. Due to the multishot stack-
ing effect and narrow aperture, the images
from the dot-product vector imaging condi-
tions are very close to those from the scalar
and magnitude- and sign-based vector imaging
conditions, especially for the PS image, but
have slightly smaller amplitudes due to the co-
sine/sine factors involved (Zhou et al., 2019;
Fan et al., 2022). PP images using the dot-
product vector imaging condition still have
some amplitude and phase differences com-
pared with the images from the scalar imaging
conditions, especially at shallow depths be-
cause the superwide opening angles at large
offset cause polarity reversal. Therefore, the
PP from the scalar imaging conditions and
the PS from the magnitude- and sign-based
vector imaging conditions can provide high-
fidelity elastic true reflectivity images.

CONCLUSION

Awavefield separation operator for the VTI
models is constructed using the qP wave
polarization directions, which are also eigen-
vectors of the Christoffel equation. The origi-
nal separation operator is defined in the mixed
space-wavenumber domain. We introduce sca-
lar operators to transform the space-wavenum-
ber operation into a space-domain operation.
The local wave propagation direction in the
space domain is estimated using the Poynting
vector. Thus, the resulting wavefield separa-
tion can be efficiently calculated in the space
domain with a graphics processing unit. To
perform ERTM using the separated P and S
waves, we not only obtain the decomposed
vector qP and qSV wavefields but also retrieve
the scalar qP wavefield. These separated scalar
and vector wavefields have the same amplitude
and phase information as the original coupled
wavefield. For anisotropic ERTM, we propose
to use the scalar imaging condition to generate
the PP image and the magnitude- and sign-
based vector imaging condition to produce
the PS image; both have higher image accu-
racy than the conventional dot-product image
condition. Finally, we use 2D numerical exam-
ples to validate the proposed wavefield separa-
tion method in the VTI models and their
applications in ERTM for the PP- and PS-re-
flectivity images.

Figure 12. Comparison between the anisotropic ERTM results using our method and
the method of Zhang et al. (2023) for the modified Marmousi2 velocity model shown in
Figure 9. (a) The PP image using our method with the scalar imaging condition (equa-
tion 14a), (b) the PS image with the amplitude- and sign-based imaging condition (equa-
tion 14b), and (c and d) the PP and PS images using the dot-product imaging condition
in Zhang et al. (2023).

Figure 13. Comparisons among the different image traces in the Marmousi2 model (a
and b) at a horizontal distance of 1.84 km and (c and d) at 2.8 km, for (a and c) the PP
image and (b and d) the PS image. The blue lines are images using the dot-product
vector imaging condition, and the red lines are using the magnitude- and sign-based
vector imaging condition.
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APPENDIX A

THE POLARIZATION DIRECTIONS OF QP AND
QSV WAVES

Following Tsvankin (2012), substituting a plane wave into the
anisotropic elastic wave equation leads to the so-called Christoffel
equation for the phase velocity V and polarization vector U:

½Γ − ρV2I�U ¼ 0; (A-1)

where Γ is the Christoffel matrix related to the stiffness matrix cij
and the propagation direction n ¼ ðsin θ; cos θÞT. The preceding
equation forms a standard 3 × 3 eigenvalue problem. For a positive
symmetric matrix Γ, eigenvalues can be obtained by solving

det jΓ − ρV2Ij ¼ 0: (A-2)

In a 2D VTI case, the Christoffel matrix degenerates to a 2 × 2
matrix, which can be expressed as

Γ ¼
�
c11 sin2 θ þ c44 cos2 θ ðc13 þ c44Þ sin θ cos θ
ðc13 þ c44Þ sin θ cos θ c44 sin2 θ þ c33 cos2 θ

�
:

(A-3)

Solving equation A-2 gives eigenvalues

ρV2 ¼ 1

2
½ðc11 þ c44Þsin2 θ þ ðc33 þ c44Þcos2 θ �Dθ�:

(A-4)

Substituting them back to equation A-1, we have the corresponding
eigenvectors

U ¼
�

2ðc13 þ c44Þ sin θ cos θ
−ðc11 − c44Þsin2 θ þ ðc33 − c44Þcos2 θ �Dθ

�
;

(A-5)

where
Dθ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðc11−c44Þsin2 θ− ðc33−c44Þcos2 θ�2þ4ðc13þc44Þ2 sin2 θcos2 θ

q
.

The two eigenvalues and the corresponding eigenvectors relate to
the phase velocities and polarization directions of two propagation
modes, with “+” denoting the qP wave and “–” denoting the qS wave,
respectively. Using relations sin θ ¼ kx=k and cos θ ¼ kz=k, where
k is the wavenumber, the two eigenvectors in equation A-5 can be
further expressed as

â1 ¼
�

kx
−ðc11−c44Þk2xþðc33−c44Þk2zþDk

2ðc13þc44Þk2z kz

�
; (A-6a)

â2 ¼
�

kx
−ðc11−c44Þk2xþðc33−c44Þk2z−Dk

2ðc13þc44Þk2z kz

�
; (A-6b)

to give the wavenumber domain polarization directions of
the qP and qS waves, where Dk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðc11 − c44Þk2x − ðc33 − c44Þk2z �2 þ 4ðc13 þ c44Þ2k2xk2z

p
.

APPENDIX B

WAVEFIELD SEPARATION EQUATIONS IN 2D
VTI MEDIA

We derive the wavefield separation equations following Fan et al.
(2022) for the isotropic case. In an anisotropic medium, the Helm-
holtz potentials for the P and S waves are�

P ¼ ∇VTI · V
S ¼ ∇VTI × V

; (B-1)

where ∇VTI is the anisotropic separation operator in equation 6. We
use Pcor and Scor to denote the amplitude- and phase-corrected
Helmholtz potential of the qP and qSV waves, which can be ex-
pressed in the wavenumber domain as (Zhang and McMechan,
2010; Fan et al., 2022)�

P̂cor ¼ IVTI · V̂
Ŝcor ¼ IVTI × V̂

; (B-2)

where IVTI ¼
�
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ S2kk

2
z

q �� kx
Skkz

�
is the normalized vector of

the qP-wave polarization vector â1 in equation 1a. We rewrite equa-
tion B-2 into

8><
>:

P̂cor ¼ 1
ik

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2z
k2xþS2kk

2
z

r
iâ1 · V̂

Ŝcor ¼ 1
ik

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2z
k2xþS2kk

2
z

r
iâ1 × V̂

: (B-3)

In addition, we have the dispersion relations k ¼ ω=VPðθÞ for the
qP wave and k ¼ ω=VSðθÞ for the qSV wave in a VTI medium.
Here, VPðθÞ and VSðθÞ are the phase velocities of the qP and
qSV waves, respectively. According to equation A-4, they are re-
lated to the propagation direction θ and can be expressed by
(Tsvankin, 2012)8<
:
VPðθÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ρ ½ðc11þc44Þsin2 θþðc33þc44Þcos2 θþDθ�

q
VSðθÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ρ ½ðc11þc44Þsin2 θþðc33þc44Þcos2 θ−Dθ�

q :

(B-4)

Substituting these dispersion relations for the wavenumbers in
equation B-3, we have
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8>><
>>:

P̂cor ¼ VPðθÞ
iω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2z
k2xþS2kk

2
z

r
iâ1 · V̂

Ŝcor ¼ VSðθÞ
iω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2z
k2xþS2kk

2
z

r
iâ1 × V̂

: (B-5)

Substituting equation B-4 into equation B-5, replacing the wave-
number with the unit propagation direction (similar to substitut-
ing Sk with Sn in equation 4), and following by transforming
them into the space domain, we finally obtain the space domain
equations � ∂Pcor

∂t ¼ αVTIn P ¼ αVTIn ∇VTI · V
∂Scor
∂t ¼ βVTIn S ¼ βVTIn ∇VTI × V

; (B-6)

where αVTIn and βVTIn are both space domain scalar operators and
can be expressed by8><

>:
αVTIn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ρ

½ðc11þc44Þn2xþðc33þc44Þn2zþDn�
n2xþS2nn2z

q
βVTIn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ρ

½ðc11þc44Þn2xþðc33þc44Þn2z−Dn�
n2xþS2nn2z

q ; (B-7)

where Sn and Dn are introduced in equation 4.
The Pcor is also regarded as the scalar qP wave and can be directly

used in ERTM for the PP image. The vector qP and qSV waves, de-
noted byVP andVS, are calculated by (Zhang andMcMechan, 2010;
Fan et al., 2022) �

V̂P ¼ IVTIðIVTI · V̂Þ
V̂S ¼ −IVTI × ðIVTI × V̂Þ : (B-8)

Similarly, following the derivations from equations B-2 to B-6, we
can obtain

� ∂2VP

∂t2 ¼ αVTIn ∇VTIPcor ¼ ðαVTIn Þ2∇VTI · ð∇VTI · VÞ
∂2VS

∂t2 ¼ −βVTIn ∇VTI × Scor ¼ −ðβVTIn Þ2∇VTI × ð∇VTI × VÞ :

(B-9)

Equation B-9 can be regarded as the decoupled elastic-wave equation
in 2D VTI media.

APPENDIX C

DERIVATION OF THE SCALAR QP WAVE IN 2D
VTI MEDIA

According to the constitutive equations of 2D VTI media, the
stress and particle velocity have the following relationship:

� ∂σxx
∂t ¼ c11

∂vx
∂x þ c13

∂vz
∂z

∂σzz
∂t ¼ c13

∂vx
∂x þ c33

∂vz
∂z

; (C-1)

where V ¼ ðvx; vzÞ is the velocity wavefield. Equation C-1 can be
further rewritten as8<

:
∂vx
∂x ¼ 1

c11c33−c213

�
c33

∂σxx
∂t − c13

∂σzz
∂t

�
∂vz
∂z ¼ 1

c11c33−c213

�
−c13

∂σxx
∂t þ c11

∂σzz
∂t

� : (C-2)

Substituting it into equation 9 can obtain

Pcor ¼ αVTIn
½ðc33 − c13SnÞσxx þ ðSnc11 − c13Þσzz�

c11c33 − c213
: (C-3)

The necessary and sufficient condition for the stable existence of
the medium is that its elastic coefficient matrix must be positive
definite. It requires c11c33 − c213 > 0 for a 2D VTI medium. In a
practical medium, c13 is often smaller than c11 and c33. Therefore,
a zero denominator does not occur.
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