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ABSTRACT

Based on an average-derivative method and optimization techniques, a 27-point
scheme for a 3D frequency-domain scalar wave equation is developed. Compared
to the rotated-coordinate approach, the average-derivative optimal method is not
only concise but also applies to equal and unequal directional sampling intervals. The
resulting 27-point scheme uses a 27-point operator to approximate spatial derivatives
and the mass acceleration term. The coefficients are determined by minimizing phase
velocity dispersion errors and the resultant optimal coefficients depend on ratios of
directional sampling intervals. Compared to the classical 7-point scheme, the number
of grid points per shortest wavelength is reduced from approximately 13 to approx-
imately 4 by this 27-point optimal scheme for equal directional sampling intervals
and unequal directional sampling intervals as well. Two numerical examples are pre-
sented to demonstrate the theoretical analysis. The average-derivative algorithm is

also extended to a 3D frequency-domain viscous scalar wave equation.

Key words: Scalar wave equation, Average-derivative method.

INTRODUCTION storage issue occurs when constructing the gradient of FWI

. . . for frequency-domain modelling. This is not the case when
Recently, full-waveform inversion (FWI) has been attracting 4 ) Y i 5 ) ) )
. . . . . constructing the gradient of FWI for time-domain modelling.
increasing attention in the community of exploration geo- o )
) ) . . . This is because the forward source wavefield and backward
physics. FWI is a full-wavefield-modelling-based data-fitting i ) ) o o
receiver wavefield are computed in the opposite time direction

(Symes 2007; Clapp 2009).

The main disadvantage of frequency-domain modelling

process to extract structural information of the subsurface
from seismograms (Tarantola 1984; Gauthier, Virieux and
Tarantola 1986; Pratt and Worthington 1990; Pratt, Shin
and Hicks 1998; Boonyasiriwat et al. 2009; Virieux and Op-
erto 2009). Forward modelling constitutes an important part

is that it can be only performed in an implicit way by solv-
ing a set of linear equations. In comparison with time-domain

. e modelling, this disadvantage is particularly obvious when it
of FWI. Forward modelling can be classified into two cate- & . B¢ 15 P y
. . . ; . comes to 3D computation. Therefore, reducing the number of
gories: time-domain modelling and frequency-domain mod- i . 7 .
. . . . grid points per shortest wavelength is in great demand in par-
elling. Compared to time-domain modeling (Chen 2009), . . ) ] .
. . . . ticular when direct solution techniques are employed. Using a
frequency-domain modelling has its advantages: convenient ] -
. . . . . rotated coordinate system, Jo et al. (1996) developed a 9-point
manipulations of a single frequency, multi-shot computation ; ,
. . . operator to approximate the Laplacian and the mass acceler-
based on a direct solver and easy implementation of attenua- . . . o
. . ation terms in a 2D scalar wave equation. The coefficients are
tion (Jo, Shin and Suh 1996). Another advantage of frequency- . o ) .
. . . . determined by obtaining the best normalized phase velocity
domain modelling is also worth mentioning. No wavefield- ) ] ) )
dispersion curves. This 9-point scheme reduces the number

of grid points per wavelength to approximately 4 and leads

*E-mail: chenjb@mail.iggcas.ac.cn to significant reductions of computer memory and CPU time.
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Hustedt, Operto and Virieux (2004) and Operto, Virieux and
Sourbier (2007) generalized the rotated-coordinate method to
a variable density case and a 3D case, respectively.

A disadvantage of the rotated-coordinate method is that
equal directional sampling intervals are required. To over-
come the disadvantage of the rotated optimal 9-point scheme,
Chen (2012) developed a new 9-point finite-difference scheme
for a 2D scalar wave equation based on an average-derivative
approach (Chen 2001; Chen 2008). This new scheme imposes
no restriction of equal directional sampling intervals and re-
duces the number of grid points per shortest wavelength to
approximately 4 for both equal and unequal directional sam-
pling intervals. Furthermore, due to its flexibility and simplic-
ity, the average-derivative method can be easily extended to
the viscous scalar wave equation and 3D wave equation.

In Chen (2012) the average-derivative method was dis-
cussed mainly in terms of a 2D frequency-domain scalar wave
equation and the 3D case was only briefly examined. In fact,
the average-derivative method for a 3D wave equation is more
attractive because it is not only concise but also applies to both
equal and unequal directional sampling intervals. On the other
hand, the construction of 3D finite-difference schemes based
on the rotated-system approach is not only very complicated
but also restricted to equal directional sampling intervals be-
cause a lot of coordinate-transformations based on equal grid
directional intervals are needed. The present paper is a further
development of Chen (2012) and I will explore the average-
derivative method for a 3D frequency-domain scalar wave
equation in detail, including coefficients optimization, disper-

sion analysis, generalization and numerical examples.

A 27-POINT SCHEME FOR A 3D WAVE
EQUATION

The 3D frequency-domain scalar wave equation reads:

3’P  3’P 9’P o
oyl 2 Yo, 1
8x2+8y2+8z2+v2 e

where P is the pressure wavefield, w is the circular frequency
and v(x, y, z) is the velocity.
A classical 7-point scheme for equation (1) is (see Fig. 1

a):
Pm+l,1.n_ZPm,l.n+Pm—l.l,n + Pm,1+l,n_ZPm.l,;z_I_Pm,I—l.n
Ax? Ay?
Pmlﬂ+1_2P7111n+Pmln—'l wZ
L Lo T ol P.=0, (2
+ AZZ + U,Z,,len m,l,n ( )

where P, ,

~ P(mAx, Ay, nAz),
nAz) and Ax, Ay and Az are directional sampling intervals

V. 1., R v(mAx, [Ay,

in the x-, y- and z-directions, respectively.

As can be seen later, within the phase velocity error of
1%, the classical 7-point scheme (2) requires approximately
13 grid points per shortest wavelength. In order to reduce
the numerical dispersion of scheme (2), very fine grids are
required. This leads to a huge amount of computer storage
and CPU time. Therefore, reducing the number of grid points
required per shortest wavelength is needed.

To this aim, Chen (2012) developed an average-derivative
approach. Using a weighted-average technique, the average-
derivative method provides a family of approximations to
derivatives from which the optimization approximation can
be determined to greatly improve dispersion accuracy. This
method is particularly advantageous when it comes to the
3D frequency-domain wave equation because no complicated
coordinate transforms are needed.

An average-derivative optimal 27-point scheme for equa-
tion (1) can be obtained as follows (see Fig. 1 b):

Perl,l,n_me.l,n+l_)m—l,l.n + Pm.l+1,n_2i)m,1.n+j)m,lfl.,n
Ax? Ay?

Pm n _ZPm n+1~)m n—

+ L1 nt1 L1 n—1

AZ?

wZ

+ S (cPyp,+dAteB+ fC) =0, (3)
m,ln

where

Pr,l,n = al(Pr,/+1.n + Pr,l,n+1 + Pr.l—'l,n + Pr4l,n—1)
+a2(PL1+l,n+l + Pr.l—l,n+1 + P7,1+1,n—l + Pr,l—lm—])
+(1— 4o, — 4a,)P

L r=m+1, m m—1,

i)m.s.n = ﬂl(Pm+l,s,n + Pm,s,nJrl + mel.s.n + Pm,s.nfl)
+ﬁ2(Pm+l.s.n+1 + Pm+1,s,nfl + mel,s.nJrl + Pm—l,s,n—l)

+(1—-48,—-48,)P, . .. s=I1+1,1,1-1,

Piy=nPoiiigt+Puiiig+Puiig+Puiy)
+ (Pt v, + Pt g+ Pt v g + Prcri214)
+(1 =4y, —4v) P, 1, g=n+1,nn-1,
A= (P iint Pouinr+ Poiin+ Potnt)
+ (Post i+ Pt )
B= (P ir1nt Puyrnir + Poyricint Pograa
+ Pyt vtnt Poctr + Puctictn + Poctgna

+Pm.l+1.n+1 + Pm.lfl,rﬂrl) + Pm.1+1.n—1 + Pm.l—l.n—l’
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Figure 1 Schematic of the classical 7-point scheme (a) and the average-derivative optimal 27-point scheme (b).

C=(Ppi1, 111, m41 + Popr ot 1 + Pt i1, 01
+ Pt it a1+ Poct it met + Post o1, nn

+ mel,lJrl,nfl + mel,lfl,n—l)’

where a4, oy, By, Bas Y15 V25 €, d and e are coefficients and
f = lmestd=lze

In equation (3), the approximations of the derivatives
are weighted averages of three kinds of approximations and
therefore, I call equation (3) the average-derivative optimal
27-point scheme. The motivation of the average-derivative
method is to provide a family of approximations to the
derivatives from which the optimization approximation can
be chosen to reduce dispersion errors (Chen 2012). Compared
to the 3D scheme based on the rotated-coordinate method
(Operto et al. 2007), the average-derivative 27-point scheme
(3) is not only concise but also applies to the situation
where the directional sampling intervals Ax, Ay, and Az are
different.

In addition, the average-derivative optimal 27-point
scheme (3) also includes the classical 7-point scheme as a
special case, because when @; =0, @, =0, 8, =0, 8, =0,
y1=0,9% =0,c=1,d =0 and ¢ = 0, scheme (3) becomes
scheme (2).

OPTIMIZATION AND DISPERSION
ANALYSIS

In this section, I perform optimization of coefficients of the
average-derivative optimal 27-point scheme (3) and make cor-

responding dispersion analysis. Substituting P(x, v, z, ) =
Pye~ "k k3 into equation (3) and assuming a constant

v, one obtains the discrete dispersion relation:

x . . 4
4sin? (k"ZA' ) E, + 4r} sin® <@) E, + 473 sin* (szz) EZ( )
Ax2(c+2dA+4eB+8fC)

)

where
E, = 2a,(cos(k,Ay) + cos(k,Az))

+4a, cos(k,Ay) cos(k,Az) + (1 — 4a; — 4a,),
E, = 2B, (cos(k,Ax) + cos(k,Az))

+4p, cos(k, Ax) cos(k,Az) + (1 — 48, — 4B,),
E, = 2y;(cos(k,Ax) + cos(k,Ay))

+ 4y, cos(k, Ax) cos(k,Ay) + (1 — 4y, — 4y,),

Ax Ax

1’1:7’ rZ:iAz’

Ay
A = cos(k,Ax) + cos(k,Ay) + cos(k,Az),
B = cos(k,Ax) cos(k,Ay) + cos(k,Ax) cos(k, Az)
+ cos(k,Ay) cos(k,Az),

C = cos(k,Ax) cos(k,Ay) cos(k, Az).

In equation (4), I suppose that Ax = max{Ax, Ay, Az}.
For other cases, a similar analysis can be performed. If Ay =

max{Ax, Ay, Az}, v, and r, should be defined by r, = %
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Table 1 Optimization coefficients for ay, «y, B1, Ba, V1> ¥25 ¢, d and e.

o o B By 71 V2 c d e
= i 0.097426 0.001449 0.042419 0.028953 0.100520 0.000000 0.474309 0.084057 0.001779
vy =
1= ; 0.027756 0.035823 0.099402 0.000000 0.075170 0.010711 0.468043 0.086909 0.000875
72 =
1= ; 0.091501 0.005050 0.101582 0.000000 0.062715 0.016398 0.454915 0.090845 0.000000
Ty =
= i 0.070821 0.015683 0.063389 0.017191 0.099169 0.001626 0.4531125 0.091146 0.000000
Ty =
1= i 0.063269 0.007299 0.000762 0.049544 0.091669 0.004497 0.461498 0.089750 0.000000
72 =
"1 :§ 0.036872 0.015865 0.060604 0.022265 0.012939 0.042942 0.456929 0.090512 0.000000
Ty =
and 7, = i—z, respectively. If Az = max{Ax, Ay, Az}, r; and + cos (271 cos@) ’
7, should be defined by ; = 3% and 7, = £%, respectively. nG

From equation (4), the normalized phase velocity can be B_ 27 sin 6 cos ¢ 27 sin @ sin ¢
derived as follows: = o8 G G
Vi _ + cos (27‘rsiru9cos<b>coS <2nc050>
v 1 G ) G
{Sinz ( M )E +7r? sin? (”Slﬂ{#) E},+r2 smz(”czoég)EZ} 2 + cos (27‘[ sin 6 sin (b) cos (27‘[ cos 6 )
Z{c+2dA+4eB+8 fC}Z ’ nG nG )’
(5) C:COS<2nsin9cos¢)cos <2ﬂsin95in¢)
G G
where V,, is the phase Velocity, k, = ksinf cos¢, k, = « cos <27r cos@)
ksinfsing, k, = kcosd, G= 2=, 0 is the propagation an- nG )’

gle, ¢ is the azimuth angle and In equation (5 ) if Ay = max{Ax, Ay, Az}, G should be de-

257 sin 6 sm¢ 27 cosd c059 fined by G = If Az = max{Ax, Ay, Az}, G should be de-
E, = 2a, ( cos + cos fined by G = kAZ
The coefficients oy, oy, By, By, V1> V2 ¢, d and e are

2 0 . .
0s ( o8 ) determined by minimizing the phase error:

O

2 6
+4a, COS( 7T sin sm¢

+(1 - 4o, — 40{2)

PE = /// _ Phe¢k0‘1’0‘27ﬁ1»,32,7/1s7/276de) :
E, =28, (cos <2nsm@cos¢>+ <2ncos€>> .

x dkdodg, (6)
27 sin 49 27 sinf cos ¢ 271 cos 0
+4p, cos where k= 1
(1= 48, —48)), The ranges of k, 6 and ¢ are taken as [0, 0.25], [0, Z]and
[0, 51, respectively. The range of E depends on the number of
E, =2y, (cos (Zn sin cos ¢) +c (27[ sin i;sm ¢)> grid points involved in the scheme. The more grid points are
1

involved, the larger the range of & can be taken. For scheme
+4y, cos (277 sin COS¢) cos (2” sin 6 smqb) (3), the range [0, 0.25] is a reasonable choice and a larger
range can lead to a degradation of dispersion accuracy.

+(1—4y; — 4y, A constrained non-linear optimization program fmincon

. 27 sin @ cos ¢ 27 sinf sin ¢ in Matlab is used to determine the optimization coeffi-
A=cos| ——5— | Fcos( — ients. The optimization coefficients for diff — 2% and
G nG cients. The optimization coefficients for different 7, = £ an
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Figure 2 Normalized phase velocity curves of the classical 7-point scheme and the average-derivative optimal 27-point scheme for fixed azimuth
angle ¢ and different propagation angles ¢ whenr; =1andr, = 1.
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Figure 3 Continuation of Fig. 2.
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Figure 4 Normalized phase velocity curves of the classical 7-point scheme and the average-derivative optimal 27-point scheme for fixed
propagation angle 6 and different azimuth angles ¢ whenr; =1 andr, = 1.
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Figure 5 Continuation of Fig. 4.
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Figure 6 The relative phase velocity error for the classical 7-point
scheme (a) and the average-derivative optimal 27-point scheme (b)
whenr; =1andr, =1.

r, = 2% when Ax = max{Ax, Ay, Az} are listed in Table 1.
One can see that the coefficients ay, a,, B, B5, ¥1> ¥» and e
vary with r; and r, and the changes in coefficients ¢ and d are
small.

I now perform numerical dispersion analysis. First, I con-
sider the case where r;, = 1 and r, = 1, which corresponds to
the equal directional intervals Ax = Ay = Az. Figures 2 and
3 show normalized phase velocity curves of the classical 7-
point scheme (2) and the average-derivative optimal 27-point
scheme (3) for fixed azimuth angle ¢ and different propaga-
tion angles 6. Figures 4 and 5 show normalized phase velocity
curves of the classical 7-point scheme (2) and the average-
derivative optimal 27-point scheme (3) for fixed propagation
angle 6 and different azimuth angles ¢. From these figures, one
can conclude that within the phase velocity error of 1%, the
classical 7-point scheme (2) requires approximately 13 grid
points per shortest wavelength, while the average-derivative
optimal 27-point scheme (3)

requires approximately

4 points.

In order to obtain an overall estimation of the phase ve-
locity errors varying with ¢ and 6, Fig. 6 shows the following
relative phase velocity error:

V., (6,6, G) —
RE = | Y90G =l eh0 < 6 < 1800,
v

—90° < 6 < 90° and G = 4. (7)

For the classical 7-point scheme (2), the maximum relative
error is 9.97% while for the average-derivative optimal 27-
point scheme (3), the maximum relative error is 0.3%.

Second, I consider the case where r{ =2 and r, = 3,
which corresponds to the unequal directional intervals Ax =
2Ay = 3Az. Figures 7 and 8 show normalized phase velocity
curves of the classical 7-point scheme (2) and the average-
derivative optimal 27-point scheme (3) for fixed azimuth an-
gle ¢ and different propagation angles 6. Figures 9 and 10
show normalized phase velocity curves of the classical 7-
point scheme (2) and the average-derivative optimal 27-point
scheme (3) for fixed propagation angle 6 and different az-
imuth angles ¢. From these figures, one can conclude that
within the phase velocity error of 1%, the classical 7-point
scheme (2) requires approximately 13 grid points per short-
est wavelength, while the average-derivative optimal 27-point
scheme (3) requires approximately 4 points.

Figure 11 shows the relative phase velocity error (equa-
tion (7)). For the classical 7-point scheme (2), the maximum
relative error is 9.97% while for the average-derivative opti-
mal 27-point scheme (3), the maximum relative error is 0.5%.

For other cases on r; and r,, a similar analysis can be
made. The common conclusion is that within the phase ve-
locity error of 1% and for equal and unequal directional
sampling intervals, the classical 7-point scheme (2) requires
approximately 13 grid points per shortest wavelength, while
the average-derivative optimal 27-point scheme (3) requires

approximately 4 grid points.

GENERALIZATION OF SCHEME(3)

Due to its flexibility and simplicity, scheme (3) can be easily
extended to the 3D viscous scalar wave equation.

The 3D viscous scalar wave equation reads:

a (10P a (1aP a (10P ?
—-==)+=(-)+=|-—F)+—P=0, (8
ox \ p 0x ay \ p dy 9z \ p 0z K
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Figure 10 Continuation of Fig. 9.
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Figure 11 The relative phase velocity error for the classical 7-point
scheme (a) and the average-derivative optimal 27-point scheme (b)
whenr; =2 andr, = 3.

where p(x, v, z) is the density and « (x, y, z) is the complex bulk
modulus that accounts for attenuation in one of the following

two ways:

_ 2 1 ’
Kk(x,y,2) = p(x, y, 2)v°(x, ¥, 2) (1 - ZE) 9)

1 1 ( 1 4 1 ‘a),
= n|—
k(x,y,2)  plx,y,2) \v(x,y,2)  7v(x,5.20 lo

2
. sgn(w) )
Fio—m—= > 10
2v(x,y,2)Q 1o
where v(x, y, z) is the real velocity, Qis the attenuation factor,
i is the unit of imaginary numbers, sgn is the sign function and
w, is a reference frequency (Operto et al. 2007).

An average-derivative optimal 27-point scheme for equa-
tion (8) is

1 1 - 1 1 -
F —Perl,l,n_ + Pm,l,n
X pm+%,l,n pm+%,l,n pm—%,l,n

1 -
+ —mel,l,n
pm—%,l,n

Figure 12 Schematic of the homogeneous model. The symbol * rep-
resents the source and A the receiver.

L b 1 1
NG

R— ml 1ni|
pml,,

n 1 1
A pmln+2

ml+1n

1 N
Pm,l,n
pml+] n m,l—%,n

1 -
+ Pm,l,n
pmln+2 pmln——

mln+1
+—Pm,l,n 1
pm,l.n—%
(4)2
+ (cP,;,+dA+eB+ fC)=0, (11)
m,l,n
where

1 1
pm-k%,l,n = z(pm,l,ﬂ+pm+l,l.n>7 pmf%,l,n = E(pmfl.l,n-"_pm,l,n)’

1
n= _(pm,lfl,n+pm,l,n)’

1
pm,l+%,n = E(pm,l,n+pm,l+l.n>7 Lo, 1— 2

o=

1 1
pm,l,n—}—% = E(pm,l,n—i—pm,l,rﬁl)’ pm,l,n—% = E(pm,l,nfl +Iom,l,n)'

NUMERICAL EXAMPLES

In this section, I present two numerical examples to verify
the theoretical analysis on the classical 7-point scheme (2)
and the average-derivative optimal 27-point scheme (3). First,
I consider a homogeneous velocity model with a velocity of
3000 m/s (Fig. 12). In this case, an analytical solution is avail-
able to make comparisons with numerical solutions. Horizon-
tal and vertical samplings are nx = 51, ny = 51 and nz = 41,
respectively. A Ricker wavelet with a peak frequency of 25
Hz is placed at the centre of the model as a source and a
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Figure 13 Seismograms computed with the analytical method (a), the classical 7-point scheme (b), the average-derivative optimal 27-point
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receiver is set halfway horizontally between the source and
the boundary. The maximum frequency used in the compu-
tation is 70 Hz. I first consider the case where r; =1 and
r, = 1. According to the criterion of 4 grid points per small-
est wavelength, horizontal sampling interval is determined by
dx =3000/70/4 m ~ 11 m and dy = dx and dz = dx.

For the analytical solution, the following formula is used:

P(x,y,2,t) = F! [1 exp {zwf} F f(t))] , (12)
r v

where F and F~! are forward and inverse Fourier transfor-
y(m) x(m) mations with respect to time, respectively, f(¢) is the Ricker

Figure 15 Schematic of the salt dome model. wavelet and

r= = %P+ (= %P + (- 5P
where (xy, ¥y, 2o) is the source position.

(b) y (m)
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140
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Figure 16 Sections of a 70 Hz monochromatic wavefield. Cross-line section for y = 319 m (a), in-line section for x = 319 m (b), depth section
for z =159 m (c) and depth section for z = 60 m (d).
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Figure 13 shows the results computed with the analyt-
ical formula (12), the classical 7-point scheme (2) and the
average-derivative optimal scheme (3). The simulation result
with the average-derivative optimal 27-point scheme (3) is in
good agreement with the analytical result while the result with
the classical 7-point scheme (2) exhibits errors due to numer-
ical dispersion. Figure 14 shows the results for the case where
7, =2 and r, = 3. In this case, dx = 3000/70/4 m ~ 11 m
and dy = dx/2 and dz = dx/3. Again, the simulation result
with the average-derivative optimal 27-point scheme (3) is
better than that of the classical 7-point scheme (2) in terms of
agreement with the analytical result.

Second, I consider a heterogeneous velocity model and
examine the performance of the average-derivative optimal
27-point scheme (3) in a heterogeneous model. Figure 15
shows a salt dome velocity model. The velocity of the salt
dome is 4000 m/s and the velocity of the overburden is 3000
m/s. The sampling numbers, the Ricker wavelet and the max-
imum frequency used in this example are the same as those
used in the homogeneous velocity model. In this example, I
consider another case where 7, = 1 and r, = 2. The source is
placed at (x =275m, y =275m, 2 = 77 m). PML (Perfectly
Matched Layer) boundary conditions are used (see Appendix)
in which L, =L, =L, =10and ¢, = ¢, = ¢, = 180.

Figure 16 shows the sections of the 70 Hz monochro-
matic wavefield computed with the average-derivative opti-
mal 27-point scheme (3). Because of the symmetry of the ve-
locity model, the cross-line and in-line sections are basically
the same. The two depth sections correspond to the positions
inside and above the salt dome, respectively. No visible dis-
persion and boundary reflections are observed.

CONCLUSIONS

I have presented an average-derivative optimal 27-point
scheme for the 3D frequency-domain wave equation in de-
tail. The optimization coefficients are obtained by minimizing
the phase velocity errors and they vary with the ratios of di-
rectional sampling intervals. Based on dispersion analysis, a
conclusion is drawn that within the phase velocity error of
1% and for equal and unequal directional sampling intervals,
the classical 7-point scheme requires approximately 13 grid
points per shortest wavelength and the average-derivative op-
timal 27-point scheme requires approximately 4 grid points.
Two numerical examples demonstrate the theoretical analysis.
Natural generalization to the 3D viscous case and incorpora-
tion with PML boundary conditions show the great flexibility

and broad applicability of the 3D average-derivative optimal
method.
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APPENDIX

COEFFICIENTS WITH PERFECTLY
MATCHED LAYER BOUNDARY
CONDITIONS FOR THE
AVERAGE-DERIVATIVE 27-POINT SCHEME

The 3D frequency-domain scalar wave equation with PML

boundary conditions reads:

1 a(l£>+1a<1ap)+1a(l£>
£, 9x \&, ox §, 0y \§, 9y §, 0z \§, 0z

2
+25P =0, (A1)
where
ic, T X
§x(x) =1- ZCOS (zz) . (AZ)
ic, Ty
£,(z) =1— —=cos (2 Ly) , (A3)
ic, Tz
%‘Z(Z) = 1 — ; COoS (z fz) N (A4)
where L,, L, and L, denote the width of the PML layer in the

x- y- and z-directions, respectively. The coordinates x, y, and
z are local coordinates whose origins are located at the outer
edges of the PML layers. The scalars c,,
L, L,and L,
error (Operto et al. 2007). For a function f(¢) in time, its

¢, and ¢, depend on
respectively and are determined by trial and

Fourier F(w) is defined as:

/ f(z) e~ dr. (AS)
If one uses another definition:
(@)= [ Fine de, (A6)

then w in equations (A2)—(A4) should be replaced by —w.
The average-derivative optimal 27-point scheme for
equation (A1) becomes:

1 1 1 - 1 n 1 P
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m,ln
where
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1
& =36 TE) & 5%5”714-E”L
1
A L

Using the ordering in Fig. A1, scheme (A7) can be rewrit-
ten as:

Pyttt F Pt i T Pt ict w1t CaPrsi 1
+ 5Pt n1 t 6Pt 11 7 Pt 11,01 €5 P11, 0
+ 6Pt it nm1 F €10 Pt m1. 0t 11 Poic1n
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16l 10010t €17 P10+ 18Pt 110
+ 19 Pyt i—1 net T €20 P 1—1 ne1 + €21 Pt 121, 01
+nPt i1 T3Pt it + 4 Pt i (A8)

+ 5 Pt i1, ni1 T €26 P11, nst + €27 Pt 141,041 = 0,

where
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Figure A1 Schematic of the average-derivative optimal 27-point scheme and its coefficients with PML boundary conditions.
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