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ABSTRACT

Xu, T., Zhang, Z., Zhao, A., Zhang, A., Zhang, X. and Zhang, H., 2008. Sub-triangle shooting
ray-tracing in complex 3D VTI media. In: Liu, E., Zhang, Z.-J. and Li, X.-Y. (Eds.), Seismic
Anisotropy. Journal of Seismic Exploration, 17: 133-146.

We model a complex 3D anisotropic structure as an aggregate of arbitrarily shaped blocks
or volumes separated by triangulated interfaces, and different anisotropic parameters can be defined
in different blocks. In anisotropic media, seismic wave travels in the direction of ray vectors with
group velocities throughout a ray trajectory, therefore, group velocities expressed by ray angles is
required, but difficult to express in terms of phase angles. An approximate expression in terms of
ray angles is derived for weak transversely isotropic media with a vertical symmetry axis (VTI). We
also propose a simple iterative process to calculate ray angles in terms of the Snell’s law still valid
for phase velocities and phase angles. Modification of shooting angles is crucial in implementing 3D
shooting ray-tracing, and we suggest to use the sub-triangle shooting method to update the shooting
angles to enhance the computing efficiency. Numerical tests demonstrate that a blocky model can
be a good description of complex 3D VTI media and the sub-triangle shooting ray-tracing is very
effective to implement for kinematics two-point ray-tracing.
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INTRODUCTION

Recently, many researchers have focused on developing ray-tracing
techniques in anisotropic media (Vinje et al., 1996; Slawinski et al., 2000;
Kumar et al., 2004; PSen¢ik and Farra, 2005; Zhao et al., 2006). For ray-
tracing in anisotropic media, three key issues should be considered: (1) ray
vectors and phase vectors are not coincident; group velocities expressed by ray
(group) angles are convenient but difficult to obtain. Some approximate
expressions have been published for weak anisotropy (Byun et al., 1989; Sena,
1991). In this paper we propose alternative approximation to enhance the
efficiency of computations. (2) Snell’s law is only valid for phase velocities and
phase angles, but is invalid for group velocities and ray angles (Slawinski et al.,
2000). The calculation of ray angles for reflected and refracted rays from
incidence ray angles is a nonlinear problem. We propose a simply iterative
method to calculate ray angles for reflected and refracted rays. (3) In most
applications, the parameterization of anisotropic models are often grid-based and
for stratified layers (Sena, 1991; Slawinski et al., 2000; Kumar et al., 2004;
Zhao et al., 2006). A fine grid-based model is a good approximation, but often
computationally extensive. We need to describe in general complex 3D models
for practical applications (Xu et al., 2006). We extend the blocky models to
describe anisotropic media and implement a sub-triangle ray-tracing method in
VTI media.

TRANSVERSELY ISOTROPIC BLOCKY MODELS

Most ray-tracing methods are based on models parameterized in cells or
grids (Langan et al., 1985; Moser, 1991; Soukina et al., 2003) or layers (Zelt
and Smith, 1992; Gui Ziou et al., 1996; Rawlinson et al., 2001). When we
divide a model into fine enough cells or grids if the model is complex with large
lateral and vertical variations. The computation time of the algorithms is almost
linearly proportional to the number of nodes in the models when traveltimes
need to be computed for all nodes (Moser, 1991); therefore, ray-tracing can be
very time-consuming for these models, especially in 3D. To overcome the
difficulty mentioned above, a 3D complex model can be thought as an aggregate
of arbitrarily shaped blocks or volumes separated by triangulated interfaces (Xu
et al., 2006). The structures are regarded hierarchically as volumes — blocks —
interfaces — triangles — points. Geological blocks are separated by interfaces,
which are described by several discrete points and are triangulated. One of the
advantages of triangulated interface as opposed to Coons, Bezier and B-spline
surface patches is that discrete points do not need to be defined in a rectangular
domain. Modification and elimination of accurate geological nodes are also easy
to implement. Furthermore, the intersection between a line and a triangle can
be computed analytically and hence the large number of ray/interface
intersections can be computed quickly.
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The disadvantages of triangulated interfaces include that they are less
smooth, normal vectors vary abruptly across linked boundary of two triangles
that are not in the same plane, and sometimes it is difficult to find an optimal
solution. These can be partly solved by redefining normal vectors at arbitrary
points so that normal vectors are continuous on the whole interfaces. The
advantages and disadvantages of blocky models with triangulated interfaces have
been summarized by Xu et al. (2006). Here, we extend our previous work on
isotropic ray-tracing to anisotropic media and describe different anisotropic
group velocities in different blocks.

GROUP VELOCITY AND RAY ANGLES IN VTI MEDIA

Daley and Hron (1977) gave phase velocities of gP-, gSV- and gSH-waves
in terms of phase angles

p\’ﬁ(ﬂ) = 1[Cy + Cy + (Cy; — Cyy)sin’d + D()] (1)
pvi(8) = A[Cy; + Cy + (Cy, — Cyy)sin’d — D@O)] (2)
oVi(0) = Cgesin’® + Cycos20 (3)

Dz(g) = (Cyy — C44)2 + 2[2(Cy5 + C44)2
= (Cy3 = Cu)(Cyy + Cy3 — 2C44)]Sin26
+ [(Cyy + G5 — 2C44)2 - 4C;5 + CM)Z]SiUZG s (4)
where p is the density, and C; (i,j = 1, 2, ..., 6) are elastic moduli. The phase
angle # is the angle between the wavefront normal and the vertical axis of the
symmetry plane. Ray angle ¢ is the angle from the source point to the
wavefront. The relationship between ray angle ¢ and phase angle 6 is given
below:
¢ =0 + f(6) , (5)
where
f(f) = arctan[(1/v)(dv/d6)] . (6)
For three body waves, we have

fo(f) = arctan{[(C,, — Cs3)sinficosf + D*(6)]

/[Cy3 + Cy + (C;; — Cyy)sin’d + D@)]} , (7
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fou(0) = arctan{[(C,, — C;;)sinfcosf — D*(9)]
f[Cy; + Cy + (C;; — Cyy)sin?e — D@1} (8)
fou(0) = arctan{[(Cs — C,)sinficosd — D*(6)]
/[Cgesin’ + C,ycos%]} 9)
D*(6) = [1/D(0)]
{[2(C}3 + Cu)* — (Cy3 — Cu)(C,, + Cy3 — 2C,,)]sinfcosd
+ [(Cy, + Cy — 2C)P° — 4(Cy3 + C,,)Ylsin'fcosh} . (10)

The group velocity can be obtained from phase velocity and phase angle as
below:

V(¢) = V() + (dv/df)* = v(f)secf(d) . (11)

In anisotropic media, seismic waves travel in the direction along the ray
vector with group velocities throughout a ray trajectory. Therefore, group
velocities expressed by ray angles is required in ray-tracing. In weak anisotropic
media, some approximations of group velocities in terms of ray angles are
presented by using a linear approximation (Sena, 1991) and a cosine polynomial
function (Byun, 1989).

In weak anisotropic media, the ray angle is close to the corresponding
phase angle. We propose the following expression

0 =¢ — %If(¢) + f(¢ — f(O)] . (12)

For a given ray angle ¢, we can obtain a corresponding approximate
phase angle 6 using eq. (12), and then we can calculate the group velocity using
eqg. (11).

Numerical calculation proves that this approximation is more accurate
than the linear approximation (Sena, 1991) and is similar to the cosine
polynomial function (Byun, 1989), and even more accurate for gSV waves
(Zhao and Ding, 2005; Zhao et al., 2006).

REFLECTION AND TRANSMISSION

Slawinski et al. (2000) extended Snell’s law in terms of slowness surfaces
in anisotropic media. As phase velocities are functions of phase angles in
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anisotropic media, given an incidence phase angle, phase angles for reflected
and refracted rays can be obtained by solving a quadratic equation (Slawinski
et al., 2000).

Here we propose a simple iterative method to compute ray angles for
reflected and refracted rays at arbitrary points on an interface. The procedure
includes three steps:

a. use eqs. (12) and (1), (2), (3) to calculate the incident phase angle and
phase velocities from a given incidence ray angle and the corresponding
group velocities;

b. calculate phase angles using Snell’s law;

c. use egs. (5) and (11) to calculate the ray angles for reflected and
refracted rays and group velocities.

In step (b), we calculate the phase angle 6, and phase velocity v, using
sinf, /v,(6,) = sinf, /v,(8,) . (13)

where 8, is the given phase angle and v, is the corresponding phase velocity. As
v,(f,) is the nonlinear function of 6, [egs. (1)-(3)], here we propose a simple
iterative method:

a. given an initial phase angle 0,;
b. calculate the phase velocity v, in the direction of 0,;

c. using Snell’s law [eq. (13)], new phase angles 6, for the reflected and
refracted rays can be calculated;

d. if the difference between 6, and 0, is smaller than a given threshold, the
process stops; otherwise, define ¢, = #;, go back to the first step.

Our iterative process is similar to that proposed by Slawinski et al.
(2000). The main difference is that we calculate ray angles from reflected and
refracted phase angles by an iteration procedure, while Slawinski et al. (2000)
propose to solve a quadratic equation.

Numerical tests indicate that the phase angle converges very quickly in the
iteration process. In weakly anisotropic media, the choice of the initial phase
angle has very little influence in the velocity convergence. If given the initial
phase 6, equals to 0,, the phase angle will converge to a given precision
(typically 1% error) after two or three iterations.
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SUB-TRIANGLE SHOOTING METHOD

Xu et al. (2006) have presented a segmentally iterative ray-tracing method
for complex 3D blocky models. However, the method cannot be directly applied
to anisotropic media, as their iterative formulations have not considered
velocities variation with shooting angles. Here we propose a sub-triangle
shooting method, which is robust in handling ray-tracing in complex 3D
anisotropic media.

Modification of shooting angles is the key to perform 3D ray-tracing,
which affects whether shooting angles can converge quickly. We introduce the
shooting ray-tracing method using 3D reflected waves as an object. Firstly, a
bunch of rays are shot at an angle range in both vertical and horizontal planes
and hence generating a matrix of shot angles. These shooting rays produce the
mesh emergence points on the surface, as shown in Fig. 1. These mesh points
form a set of triangles, called emergence triangles. The three vertexes of
emergence triangles correspond to shooting angles (6.,¢,) as well as direction
components (sinf; cose;,sind; sing;,cosf,), denoted by w;, where i = 1,2,3. With
the aid of area coordinates (Xu et al., 2004, 2006), it can easily and rapidly
determine the triangle where a target receiver P is situated. When the positions
of receivers, three vertexes of the situated triangles, and the corresponding
shooting angles (or direction components) are known, the shooting ray-tracing
is a process to update shooting angles so that the rays are directed towards the
receivers. As it is a nonlinear problem, the iteration is required.
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Fig. 1. The emergence points form a set of so-called emergence triangles (Cross P is a receiver)
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As shown in Fig. 2, the receiver P lies inside the emergence triangle
T,T,T,. Suppose that the shooting direction components of three vertexes are
w}”, where (i,j = 1,2,3), i denotes the sequence number and j represents three
components. Let the area coordinates of the receiver P in the triangle be u,, the
new component w; in the shooting direction is then given by

3
w, =Y, wiu, (14)
i=0

We perform shooting in this new direction and hence obtain the
emergence point T,. If the distance between T, and the receiver is less than a
given precision, the shooting iteration stops. Otherwise we construct an
equilateral triangle T,T,Tg, where the emergence point T, is one vertex and the
receiver P is at the centre. Using shooting direction components of three
vertexes T, T,, T;, and performing weighted summation over area coordinates
of T5 and Ty in the triangle, new direction components are calculated as eq. (14)
for the next shooting to generate another two emergence points T: and Tg.
Because of nonlinearity, there is no coincidence between Ts and Ts, T; and Tg.
The shooting emergence points T,, T5 and T constitute a new initial triangle for
the shooting iteration. Continuing the procedures above for the shooting iteration
until the distance between the new emergence point and the receiver is less than
4 given precision.

T;j J‘/ \'~ T3

Fig. 2. The sketch map of the sub-triangle method to update shooting angles.
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SYNTHETIC DATA EXAMPLES

We present two typical VTI blocky models (Figs. 3 and 3) to illustrate the
sub-triangle ray-tracing method. These models, contained within cubes consist
of several blocks separated by triangulated interfaces. Both models have
dimensions of 5000 x 5000 x 5000 m. X-, Y- and Z-axes are denoted as red,
green and blue colour. Fig. 3 (Model 1) shows a simple blocky model with
three dipping plane interfaces. Model 1 has 4 blocks (denoted by Roman
letters), 3423 triangles and 1626 points. Fig. 5 (Model 2) shows a complex
model, composed of normal faults, reverse faults, an intrusive body and a lens,
has 7 blocks (denoted by Roman letters) and 4649 triangles and 2152 points.
VTI parameters of two models are listed in Tables 1 and 2. Note that J(C,, /)
and /(Cy;/p) are horizontal and vertical qP-wave phase velocities, and V(Cy/o)
and +/(Cg /p) are vertical and horizontal gSH-wave phase velocities,
respectively.
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Fig. 3. Model 1 has four blocks (denoted as Roman letters) and 3423 triangles, and corresponding
ray-tracing results.
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The source-receiver pairs are located on the surface and the locations of
the sources and receivers are indicated by stars and triangles, respectively. The
third dip layer in Model 1 and the upper interface of the lens in Model 2 are
defined as reflecting interfaces. As the distinction of ray trajectories is of a
minor symmetry and not intuitive as opposed to traveltime contours, we just
show two-point ray-tracing results both in VTI media. Fig. 3 denotes qP-waves
in Model 1 and Fig. 5 denotes qSV-waves in Model 2.

Table 1. VTI parameters used in Model 1 (Fig. 3).

Blocks VG, /p) V(Cis /o) VICy3/p) V(Cuilp) V(Ces/0)
I 2100 2000 1158 89 880
11 2262 2200 1600 1020 1080
111 2980 2700 2196 1200 1336
v 3389 3200 2130 1650 2089

Fig. 4 illustrates associated traveltime contours of gqP-, gqSV- and
qSH-waves in Model 1, respectively. Fig. 6 illustrates associated traveltime
contours of three waves in Model 2. Solid lines denote traveltime contours in
VTI media and dashed lines in homogenous media. Homogenous velocities in
each bock are defined as the phase velocities (Table 1). Traveltime contours in
homogenous media (dashed lines in Figs. 4a - 4c) are all concentric circles for
the three flat interfaces and only tilted in the x-axis direction. Note that
traveltime contours in VTI media of three waves show considerable differences.
Traveltime contours of qP-waves are closest to those in homogenous media
(solid lines in Figs. 4a and 6a) as opposed to the other two waves. As phase
velocities are smaller than corresponding group velocities media in VTI media,
the traveltimes are smaller and hence traveltime contours are closer to the centre
of the circle (Fig. 4a) or closer to the centre (Fig. 6a). For qSH-waves,
traveltime contours in VTI media have an offset opposite to those in
homogenous media. Traveltime contours have an offset in the positive direction
along x-axis when flat interfaces tilted to the negative direction along the x-axis
(solid lines in Fig. 4c) and have an opposite offset (solid lines in Fig. 6c¢) for
the reflected interface near the reflected points tilted to the negative direction
(along the x-axis positive). There is a distinctive characteristic in traveltime
contours for gSV-waves (solid lines in Figs. 4b and 6b) induced by anisotropy.
Note that due to the complexity of Model 2, several receivers can not be traced
(Fig. 5), as a result, traveltimes contours have major errors in the corresponding
position (the left part in Figs. 4 and 6).
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Fig. 4. Travelime contours of three waves ray traced in Model 1 (Fig. 3); solid lines denote in VTI
media and dashed lines are for in homogenous media. (a) gP-waves; (b) gSV-waves; (c) gSH-waves.
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.y N ERN
W“V‘.

Fig. 5. Model 2, composed of normal faults, reverse faults, an intrusive mass, and a lens, has 7
blocks (denoted as Roman letters) and 4649 triangles, and the corresponding ray-tracing results.

Table 2. VTI parameters used in Model 2 (Fig. 5).

Blocks VCil)  NiCule)  NCyule)  N(Culp)  V(Cylp)
I 2000 2000 1158 880 880
I1 2262 2200 1600 1020 1080
111 2583 2408 1513 1321 1566
v 2980 2700 2196 1200 1336
\Y% 3389 3200 2130 1650 2089
VI 3742 3306 2070 1818 2285

VII 5320 4726 2460 2860 3321
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Fig. 6. Traveltime contours of three waves ray traced in Model 2 (Fig. 5); solid lines denote in VTI
media and dashed lines are for homogenous media. (a) qP-waves; (b) gSV-waves; (c) gSH-waves.
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CONCLUSIONS

Complex anisotropic media can be described accurately as aggregates of
arbitrarily shaped blocks than layers, cells or grids. Using triangulated
interfaces, complex media, such as faults, pinch-outs, intrusive bodies, and
lenses can be realistically represented by blocks. Different anisotropic
parameters including group velocities can be defined in different blocks.

As Snell’s law is invalid for group velocities and ray angles in anisotropic
media, we have proposed a simple iterative procedure to calculate ray angles for
reflected and refracted rays. Our approximate expression of group velocities by
phase angles is accurate in weak VTI media. The accuracy is similar to the
cosine polynomial of Byun et al. (1989), and even more accurate for gSV
waves.

We have also extended our previous sub-triangle shooting method in
isotropic media to VTT media. Numerical tests demonstrate that a blocky model
can be a good description of a complex 3D anisotropic medium and the
sub-triangle shooting ray-tracing is effective in implementing kinematics
two-point ray-tracing, and our method is quite accurate for ray-tracing in VTI
media.
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