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Abstract 

 
Seismology requires accurate (fine) data reconstruction from sparsely (or irregularly) sampled data 

sets, but such results are usually not possible with conventional (non-fractal) methods.  To produce a high- 
precision reconstruction of seismic data, a more accurate localized fractal reconstruction approach can be 
used provided the data is self-similar on local and global spatial scales. In this paper, a novel localized 
fractal reconstruction approach has been presented. This method is a data-driven algorithm that does not 
require any geological or geophysical assumptions concerning the data. Here, we report our results of using 
the approach to reconstruct sparsely sampled seismic data. Our results indicate that the fine structure 
associated with seismic data can be easily and accurately reconstructed using the localized fractal approach, 
indicating that seismic data is indeed self-similar on local and global spatial scales. This result holds 
promise not only for future seismic studies, but also for any field that requires fine reconstruction from 
sparsely sampled data sets. 
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1. Introduction 

 
Like many research fields in geophysics, 

seismology depends  heavily  on  observational 
data. Seismic data are typically irregularly (or 
sparsely)  sampled  along  spatial  coordinates. 
This   is   often   caused   by   the   presence   of 
obstacles, no-permit areas, feathering, and dead 
traces and by economics. Most multitrace data 
processing algorithms cannot adequately handle 
irregular sampling. This can make it difficult to 
obtain detailed information on subterranean 
structures or to avoid spatial aliasing. 
Numerical reconstruction of seismic data is 
therefore a necessity. In particular, interpolating 
seismic traces is  often used for  seismic data 
reconstruction, but unfortunately, conventional 
interpolation methods typically fail to provide 

the level  of  detail  needed to  understand fine 
structures present in seismic wavefields. Novel 
reconstruction approaches that  would provide 
both high-precision and fine interpolation of 
seismic traces would be advantageous. 

High-precision interpolation can present a 
problem for any data-driven research field. In 
seismology, conventional interpolation 
approaches (Hindriks and Duijndam, 2000; 
Duijndam and  Schonewille, 1999;  Kabir  and 
Verschuur, 1995; Larner and Rothman, 1981; 
Liu, 2004; Ronen, 1987; Spitz, 1991; Trad et 
al., 2003; Porsani, 1999; Wang, 2003; Zwartjes 
and Sacchi, 2007) are valid for de-aliasing of 
seismic events, but in general seismic data are 
self-similar on both local and global scales. 
Standard interpolation approaches are not the 
most optimal method for dealing with data that 
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exhibit local-global self-similarity. Instead, 
reconstructing data using fractal methods may 
yield superior results, since fractals are 
themselves self-similar on local and global 
spatial scales. Overall, fractal interpolation 
functions are powerful tools that can reconstruct 
the local properties of complex data sets.  In 
comparison, non-fractal interpolation functions 
are easily adapted to smooth data sets, but 
typically ignore the fine structures and local 
properties of more complicated data sets. 

Conventional fractal interpolation methods 
based on the Random Fractional Brown Motion 
model  (Navascués and Sebastián, 2004; 
Barnsley and Demko, 1985; Fan, 2005) assign 
the same value for the vertical scaling factor 
throughout the entire interpolated region. This 
makes it difficult to obtain information on the 
local properties of the data. In addition, 
conventional  fractal  interpolation  methods  do 
 not have any explicit expression, so the 
approach   is   often   a   complicated,  iterative  
process. Despite these challenges, there is recent 
progress in using localized and explicit fractal 
interpolation functions to obtain detailed 
information on the local properties of seismic 
data sets. 

In this paper, an approach for fine 
reconstruction  of seismic data approach has 
been proposed that does not require any 
geological or geophysical assumptions 
concerning the data.  The reconstruction 
approach explored  is  based on a localized 
fractal interpolation function.  Using the 
approach, the fine structure associated with 
seismic data can be easily and accurately 
reconstructed.  To demonstrate  the reliability 
and the validity of the approach, numerical 
examples for high-precision interpolation and 
fine reconstruction of real seismic data  have 
been given in this paper. 

 
 

2. Theory and method 
 
 

The new fractal reconstruction method 
described below is derived under the 
assumption that the data is self-similar on local 
and global spatial scales. This method is a data-
driven  algorithm  that   does   not  require    any  

 
 
 
 
 
 

 
geological or geophysical assumptions 
concerning the data. 

We use a localized fractal interpolation to 
reconstruct seismic data and associated fine 
structures. To increase the method’s efficiency, 
we also introduce the inorder traversing binary 
tree into the reconstruction. 

The localized fractal interpolation 
approach stated previously is based on the 
concepts of affine transform and iterated 
function systems [Singer and Zajdler, 1999; 
Navascués and Sebastián, 2004; Barnsley and 
Demko, 1985; Chu and Chen, 2003; Fan, 2005; 
Sun et al., 1996]. Generally, the affine 
transform is defined by 

( )
, {1, 2, ,

( , )( )
n

n
n

L xx
n

F x yf x
ω

⎛ ⎞⎛ ⎞
= ∈⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
，              

      
           （1） 

where 1, 2, ,n = . In the following, we 
localize the affine transform and present a 
localized fractal interpolation approach. 

When  and  are assumed to 
be linear functions and mapping from Equation 
(1)  is   localized,   t hen   the   mapping   can   be   
defined as the affine transform 

( )nL x ( , )nF x y

0n n
n

n n n

a ex x
c d fy y

ω
⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝

⎞
⎟
⎠

1,2, ,n N= ,             

（2） 

where coefficients , ,  and na nc ne nf  are 
determined     by    conditions     0 0 )( ,x ynω =  

1 1( ,n n )x y− −  and ( , ) ( ,n N N n n )x y x yω = .  Here 

we have  (nd 1nd < ) as a free parameter, 
which is called the vertical scaling factor and 
plays a key role during the interpolation. 
Assuming fractal interpolation, the localized 
and explicit fractal interpolation function can be 
given by 
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The vertical scaling factor  can be 

expressed as 
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where maxy and miny are chosen over the interval 
, and ], lnx +[ lnx − ε is determined by 

)(n0+.1= randomε .           is         a  
random deviate generated from a uniform (0, 1) 
distribution. Because  is unique at 

)(nrandom

)(nrandom
the nth point, the vertical scaling factor dn  is 
unique. Therefore the value of interpolation 
function is unique. Equations (4) and (5) are 
key     formulas     for     the      localized      fractal 
interpolation approach. 
 
 

3. Numerical examples on high-precision 
interpolation and fine reconstruction of 
real seismic data 

 
 

To testify the reliability and the validity of 
the localized fractal interpolation, we carry out 
a typical reconstruction example by the 
interpolation   for   a   step-triangle   curve   and 
Ricker wavelet. Figure 1A, B show the original 
curves and fitted curves for step-triangle curve 
and Ricker wavelet, respectively. The dotted 
lines are obtained by using the interpolation and 
the solid lines are the exact curves. Although 

the new fractal interpolation approach appears 
simple, it is also precise (see Figure 1) and 
efficient. It is suitable for treating both 
unsmoothed (Figure 1A) and smoothed (Figure 
1B) data structures, and faithfully reconstructs 
the local properties of a data set (Figure 1A). 

We use the localized and explicit fractal 
interpolation function to reconstruct high-
resolution seismic data from sparse seismic 
traces. The example considered here uses 
seismic  data  from  the  Jiyang  Depression  and 
 the Southern Bohai Bay Basin in Northern 
China, as identified in Figure 2 (Zhao et al., 
2004). We selected records of a seismic event at 
seismic  stations  143SLX,  137HJZ,  131LJZS, 
125XFX, 119YFZ, 113YZC, 107XZX, 
101QDZ, 95QDZ and 87SZZ (Figure 2), which 
produced the seismogram section shown in 
Figure   3A.   The   average   spacing   between 
stations was 10 km. The parameters of seismic 
event 010102 are listed in Table 1. The seismic 
data were bandpass-filtered between 0.005 and 
4 Hz and instrument responses were removed. 
Since the seismogram is complicated and 
irregular, conventional interpolation approaches 
will not reproduce the local properties and fine 
structure of the data. We erased the even traces 
in the seismogram section in order to construct 
a sparsely sampled seismogram (Figure 3B) for 
reconstruction. Figure 3C shows the 
seismogram section after interpolating with the 
localized and explicit fractal approach. 

 
 
 
 

Table 1. Parameters for seismic event 
 

 

Event Origin (UT) 
(dd/mm/yy) 

 

Latitude 
 

Longitude 
 

Depth (km) 
 

Mw 
 

010102 02/01/01; 07:30:04  

126.81 
 

6.75 
 

33 
 

6.4 
 

Mw denotes the magnitude of the event. 
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Fig. 1: Testing precision for the localized and explicit fractal interpolation function. A. Original data 
curve (solid line) and interpolated data curve (dotted line). B. Original Richer wavelet (solid line) and 
interpolated wavelet (dotted line). 
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Fig. 2:. A. Location map of portable seismic stations (black triangles 143SLX, 137HJZ, 131LJZS, 
125XFX, 119YFZ, 113YZC, 107XZX, 101QDZ, 95QDZ and 87SZZ) deployed in the Jiyang 
depression and the southern Bohai Bay Basin, Northern China, along with topography in the region. B. 
Locations of seismic events (black stars), portable seismic stations (black rectangles), and great circle 
paths. In this research, seismic event 010102 was chosen for study. 
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Fig. 3: Reconstruction of seismic data. A. Original seismogram section from seismic traces of event 
010102  (Figure  2B)  at  seismic  stations  (black  triangles)  143SLX,  137HJZ,  131LJZS,  125XFX, 
119YFZ, 113YZC, 107XZX, 101QDZ, 95QDZ and 87SZZ (line AA in Figure 1a). B. Sparse 
seismogram section (the even traces are erased from panel a). C. Interpolated (reconstructed) 
seismogram section, including the even traces from Figure A and the interpolated traces. D. 
Comparison of original seismogram (solid line) at Station 107XZX and interpolated (reconstructed) 
seismogram (dotted line). 

 
 

Comparing  the  original  and  interpolated determination  R2 is 0.98. Each of these traces 
(reconstructed)  seismogram  sections,  we  find 
that   the   two   are   essentially  identical   in 
amplitude, phase and waveform. To verify the 
precision and fidelity, we  compared an 
interpolated (reconstructed) trace with its 
original trace (as erased in the initial section). 
Indeed, we find a near-perfect match (Figure 
3D). By correlation analysis for the 
reconstructed trace and its original trace (Figure 
3D),  it  is  obtained  that  the  coefficient  of 

is provided with 4000 sampling points. These 
results indicate that the localized and explicit 
fractal interpolation can efficiently and exactly 
deal with the problem of complicated data 
structures, provided the data is self-similar on 
local and global spatial scales. Such a result 
would not be possible using conventional 
interpolation methods. Also, since the 
reconstruction is faithful to the original data, it 
supports the assertion that seismic data have the 
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local-global self-similarity property associated 
fractal geometry. Actually, a fine reconstruction 
of complex data sets is realized by using the 
localized  fractal  approach  in  this  paper.  The 
fine reconstruction is data-driven. 

 
 
4. Discussion and conclusions 

 
 

In this paper, the seismic data 
reconstruction approach based on a localized 
fractal interpolation function has been proposed 
that   does not   require   any  geological   or 
geophysical assumptions concerning the data. 
Although this method is a data-driven algorithm 
that   does not   require   any  geological   or 
geophysical assumptions concerning the data in 
theory, the seismic data observed contains 
geological or geophysical information of the 
studied region and is self-similar on local and 
global spatial scales. Therefore the seismic data 
reconstructed  from the  seismic  data  observed 
will be objective, correct and reliable. The new 
approach is numerically stable and easier to 
implement. The method is robust enough to 
generate near-perfect results. Also, results of 
using the approach to reconstruct sparsely 
sampled   seismic   data   have   been   obtained. 
These results show that the use of high- 
precision and high-fidelity fractal interpolation 
scheme for data reconstruction is a valid and 
efficient  approach not  only  for seismic 
wavefield de-aliasing, but also for fine and 
amplitude-preserving reconstruction of seismic 
data from sparse seismic traces. 

Results stated previously demonstrate the 
usefulness of localized fractal interpolation for 
seismic data reconstruction, and in particular its 
ability to obtain detailed information for high- 
resolution seismic imaging and high-precision 
reconstruction  of  seismic  wavefields.  Indeed, 
these  results  are  significant  for  any  research 
field  that  requires  accurate  interpolation  and 
fine reconstruction of sparsely sampled and 
irregular data sets, provided the data exhibits 
local and global self-similarity. Also note that 
our approach above only considered first-order 
interpolation, and it remains to be seen if 
incorporating higher orders will affect the 
results.   Extending   the   approach   to   higher 

dimensions may yield a more precise, reliable 
and economical method for high-resolution 
imaging and high-precision wavefield 
reconstructions. 
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